Probability

SIMPLE PROBABILITY:

Definition - the chance that something (an event) will happen. Probability is always measured as a ratio (fraction) of the number of successful outcomes to the number of possible outcomes and is written as a percentage.

Success - what you WANT to happen (desired outcome)
Possible - what COULD happen (all outcomes)
Failure - what you DON'T want to happen (possible minus success)
Favorable Probability - when probability is above 50\% (likely) Unfavorable Probability - when probability is below 50\% (NOT likely) Neither Favorable Nor Unfavorable - when probability equals 50\% WILL Happen - when probability equals 100\%
WON'T Happen - when probability equals 0\%

Probability

COUNTING OUTCOMES:

Fundamental (Basic) Counting Principle - multiply the quantities of each choice Combinations - used when choosing more than one item and order DOESN \quad T matter
Permutations - used when choosing more than one item and order DOES matter
Sample Space - the set of ALL possible outcomes of an event

THEORETICAL VS. EXPERIMENTAL PROBABILITY:

Theoretical Probability - what SHOULD happen, on average, with many repetitions
Experimental Probability - what actually DOES happen in trials
With increased events, experimental probability approaches (becomes) theoretical probability

Probability

ODDS:

Definition - the ratio of successes to failures. Written as a ratio and reduced to lowest terms.

Favorable Odds - when first number in ratio is LARGER than second number (likely)
Unfavorable Probability - when first number in ratio is SMALLER than second number (NOT likely)
Even Odds - 1:1

Probability

PROBABILITY OF COMPOUND EVENTS:

- Multiple Events (e.g. pulling TWO cards out of deck)

Independent Event - an event where the outcome does NOT affect another event's outcome (REPLACING)

Formula: $P(A$ and $B)=P(A) \bullet P(B)$
Dependent Event - an event where the outcome DOES affect another event's outcome (NOT replacing)

Formula: $P(A$ and $B)=P(A) \bullet P(B$ following $A)$

- One Event From Multiple Sources (e.g. rolling TWO dice)

Mutually Exclusive - Events that CANNOT happen at the same time
Formula: $P(A$ or $B)=P(A)+P(B)$
Inclusive - events that may have overlap (CAN happen at same time)
Formula: $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

