Introduction to Transformations

Transformations 4 types of changes in	n location, direction, and/or shape
Preimage Original coordinates/shape	Image New/changed coordinates/shape
Translation (RIGID) " <u>SLIDE</u> " (move) in 1 or 2 directions Left→ subract from x- Right→ add to x- Up→ add to y- Dow→ subtract from y-	Rotation (RIGID) " <u>TURN</u> " about a fixed point Clockwise (-90 deg.) → swap x- and y- & change sign of new y- Counter-clockwise (90 deg) → swap x- and y- & change sign of new x- Half-turn (180 deg) → chage both signs
Reflection (RIGID) " <u>FLIP</u> " over line Reflect over y- → change sign of x- Reflect over x- → change sign of y-	Dilation (NOT RIGID) "ENLARGE"/"REDUCE" Multiply both coodinates by scale factor

Example 1: Name the type of transformation depicted in the diagram below. Dashed figure (preimage) \rightarrow solid figure(image)

Example 2: Complete the statement using the description of the translation. In the description, points (2,0) and (3,4) are two vertices of a triangle.

a) If (2,0) translates to (4,1), then (3,4) translates to _____.

b) If (2,0) translates to (-2,-1), then (3,4) translates to _____.

Example 3: A point on an image and the transformation are given. Find the corresponding point on the original figure.

a) Point on the image: (2,-4); b) Point on the image: (-5,-7);

Transformation: (x, y) - -> (x, -y); Original point: _____

Translations

Translations			
LI			
Example 1: Use the translation (x, y	')> (x - 5, y + 8)		
1. What is the image of $B(4,2)$?		2. What is the imaged	ge of $D(21,5)$?
2 What is the presimage of $E^2/22$	4) 2		the preimage of $U^{2}(7,25)$
3. What is the preimage of $F'(23, 2)$	4) ?	4. What is	the preimage of $H'(7,25)$?
Example 2: Practice writing translat	ion rules.		
Given the preimage: A(2, 8)	B(5,-3)	C(-4, 7)	
Write the image using the translation	n rule:		
		->(x-3, y+3)	c) $(x, y)> (y, x)$
$a_{j}(x,y) \rightarrow (x+2, y)$	$\mathbf{b}_{\mathbf{j}}(x,y)$	× (x 3, y + 3)	$(y, x) \rightarrow (y, x)$

Example 3 : Translate $\triangle ABC$ 3 units left and 2 units down.

- a. Rule? $(x, y) \rightarrow (x, y)$
- b. Translate \overline{ED} : 5 units right and 6 units up.

C. Translate \overline{GH} : 7 units left and 9 units down.

d. Write the arrow rule for the transformation.

Example 4:

Figure *ABC* has vertices A(-3, 3), B(1, -1), and C(0, 5). Sketch *ABC* and draw its image after the translation $(x, y) \rightarrow (x + 4, y + 2)$.

Figure *ABC* has vertices A(4, 2), B(2, 6), and C(6, 6). Sketch *ABC* and draw its image after the translation $(x, y) \rightarrow (x - 6, y - 3)$.

Reflections

Reflection	
Axis of Symmetry	

Example 1: Use a reflection in the *y*-axis to draw the other half of the figure.

Investigation for reflection rules:

Starting Point	Reflect over x axis	Reflect over y axis	Reflect over $y = x$	Reflect over y = -x
A (1,4)				
B (5, 2)				
C (2,0)				
What happened?				
Rule	$(x, y) \to (\qquad,\qquad)$	$(x, y) \rightarrow ($,)	$(x, y) \to (\qquad , \qquad)$	$(x, y) \to (\qquad,\qquad)$

Find the coordinates of the image of the figure using the given transformation.

Practice:

1. Reflect the point (4,3) over the x axis.	2. Reflect the point (9,-5) over the y axis.	3. Reflect the point $(0,-1)$ over the line $y = x$.	4. Reflect the point (-8,3) over the line $y = -x$.
5. Reflect the point (4,-2) over the line $y = x$.	6. Reflect the point (2, −3) over the x axis.	7. Reflect the point (-1,2) over the line $y = -x$	8. Reflect the point (10,3) over the y axis.

Identify the Axis of Symmetry/Line of Reflection for each transformation.

Rotations

Rotations	Turning a figure about a fixed point – the origin usually
	What ways can we "turn" objects?
	What are the two "D's" of rotation?
	Will a rotation produce a similar or congruent figure?

Example:

Rotation Rules: Use three different colored pencils and patty paper!

Τ

Starting	90º Rotation Counter	180º Rotation Counter	270° Rotation Counter
Point	Clockwise	Clockwise	Clockwise
A (1,4)			
B (5,2)			
C (2,0)			
What happened?			
Rule	$(x, y) \to (,) $	$(x, y) \to (,) $	$(x, y) \to (,) $
What else could this be?			

*** You are expected to memorize the rules for the Final Exam!

Quadrant Summary:

Example 3:

	a. What are the coordinates of (3,-2) under a 90° counterclockwise rotation?	b. What are the coordinates of (-5,4) under a 180° counterclockwise rotation?	c. What are the coordinates of (3,2) under a 90° clockwise rotation?

Practice:

d. What are the coordinates of (1,3) under a 270° counterclockwise rotation?	e. What are the coordinates of (-5,6) under a 270° clockwise rotation?	f. What are the coordinates of (-7,9) under a 180° clockwise rotation?
g. What are the coordinates of (-5,3) under a 90° clockwise rotation?	h. What are the coordinates of (-8,-5) under a 180° counterclockwise rotation?	i. What are the coordinates of (7,-3) under a 90° counterclockwise rotation?

Dilations

Scale Factor	A transformation that produces an image that is the as the
	original, but a
	A dilation or the original figure.
	If the scale factor is greater than 1, the figure
	If the scale factor is between 0 and 1, the figure
_	This transformation will NOT produce a congruent figure.
Rule: (x, y	$) \rightarrow (f_x, f_y)$ where f represents the scale factor.
Example 1:	If the scale factor is 3, how would you write the rule?

State whether a dilation using the scale factor k results in a reduction or an enlargement.

a) k = 3 b) $k = \frac{1}{3}$ c) $k = \frac{5}{4}$ d) k = 0.93

Quadrilateral *PQRS* has vertices P(-2, 4), Q(4, 4), R(4, -2), and S(-4, -4). It is dilated by a scale factor of $\frac{1}{2}$.

Reduction or Enlargement?

Scale Factor?

Reduction or Enlargement?

Scale Factor?

Variables:

Example: Write the arrow rule for the following transformations.		
a. Translate 7 units left, 4 units down, and reflect over y axis b. Translate 3 units right, 2 units up, and then dilate by 1/3		

	the y axis
e. Reflect over line y = x, and dilate by 2.	f. Rotate 90 degrees clockwise and then reflect over
c. Rotate 180 degrees and then compressed horizontally by 1/2.	d. Translate 5 units up and stretch vertically by a factor of 3.

Composition

Definitions:				
Composition				

1. Pre-image:	W(-3,-1), C(-4,-3), and H(-1,-3)	Arrow Rule:
Rotate the figure 270°		
Reflect the figure over the y-axis		
Translate the figure left 2 and up 4.		

2. Pre-image	G(2,1), H(0,3), and L(5,4)	Arrow Rule:
Translate the figure left 2 and up 1.		
Reflect the figure over $y = -x$		
Reflect the figure over the y-axis		

3. Pre-image:	G(1,2), S(3,0), and T(4,4)	Arrow Rule:

Rotate the figure 90°	
Dilate the figure horizontally by a scale factor of 4	
Translate the figure according to $(x,y) \rightarrow (x+2,y+2)$	

4. Pre-image	F(-6,4), O(-1,4), and R(-2,2)	Arrow Rule:
Dilate the figure by a scale factor of 1/2		
Reflect the figure over the y-axis		
Rotate the figure 270° clockwise about the origin		