Introduction to Transformations

Transformations ${ }^{\text {a }} 4$ types of	4 types of changes in location, direction, and/or shape
Preimage Original coordinates/shape	Image New/changed coordinates/shape
Translation (RIGID) "SLIDE" (move) in 1 or 2 directions Left \rightarrow subract from x - Right \rightarrow add to x - Up \rightarrow add to y - Dow \rightarrow subtract from y -	Rotation (RIGID) "TURN" about a fixed point Clockwise (-90 deg.) \rightarrow swap x - and $y-\&$ change sign of new y - Counter-clockwise (90 deg) \rightarrow swap x - and y - \& change sign of new x - Half-turn (180 deg) \rightarrow chage both signs
```Reflection (RIGID) "FLIP" over line Reflect over \(y-\rightarrow\) change sign of \(x-\) Reflect over \(x-\rightarrow\) change sign of \(y\) -```	Dilation (NOT RIGID)   "ENLARGE"/"REDUCE"   Multiply both coodinates by scale factor

Example 1: Name the type of transformation depicted in the diagram below.
Dashed figure (preimage) $\rightarrow$ solid figure( image)





Example 2: Complete the statement using the description of the translation. In the description, points (2,0) and $(3,4)$ are two vertices of a triangle.
a) If $(2,0)$ translates to $(4,1)$, then $(3,4)$ translates
b) If $(2,0)$ translates to $(-2,-1)$, then $(3,4)$ translates to $\qquad$ -.
to $\qquad$ .

Example 3: A point on an image and the transformation are given. Find the corresponding point on the original figure.
a) Point on the image: $(2,-4)$;
b) Point on the image: $(-5,-7)$;

Transformation: $(x, y)-->(x-4, y+3)$; Original point: $\qquad$

Original point: $\qquad$

## Translations

Translations	

Example 1: Use the translation $(x, y)$--> ( $x-5, y+8$ ).

1. What is the image of $B(4,2)$ ? What is the image of $D(21,5)$ ?
2. What is the preimage of $F^{\prime}(23,24)$ ? What is the preimage of $H^{\prime}(7,25)$ ?

Example 2: Practice writing translation rules.
Given the preimage: $\quad A(2,8) \quad B(5,-3) \quad C(-4,7)$
Write the image using the translation rule:
a) $(x, y)-->(x+2,-y)$
b) $(x, y)-->(x-3, y+3)$
c) $(x, y)-->(y, x)$

Example 3: Translate $\triangle A B C 3$ units left and $\mathbf{2}$ units down.
a. Rule? $(x, y)-->\left(\begin{array}{ll}x & , y\end{array}\right)$
b. Translate $\overline{E D}: 5$ units right and 6 units up.
C. Translate $\overline{G H}$ : 7 units left and 9 units down.

d. Write the arrow rule for the transformation.

## Example 4:

Figure $A B C$ has vertices $A(-3,3)$, $B(1,-1)$, and $C(0,5)$. Sketch $A B C$ and draw its image after the translation $(x, y) \rightarrow(x+4, y+2)$.



Figure $A B C$ nas vertuces $A(4,2)$, $B(2,6)$, and $C(6,6)$. Sketch $A B C$ and draw its image after the translation $(x, y) \rightarrow(x-6, y-3)$.


## Reflections

Reflection	
Axis of Symmetry	

Example 1: Use a reflection in the $y$-axis to draw the other half of the figure.




Investigation for reflection rules:

Starting   Point	Reflect over x axis	Reflect over y axis	Reflect over y = x	Reflect over y = -x
A (1, 4)				
B (5, 2)				
C (2,0)				
What   happened?				
Rule	$(x, y) \rightarrow(\quad, \quad)$			



Find the coordinates of the image of the figure using the given transformation.

1. Reflection across the $x$ axis

2. Reflection across the line $y=-x$ $T(2,2), C(2,5), Z(5,4), F(5,0)$
3. Reflection across the $y$ axis

4. Reflection over the line $y=x$ A $(1,2) \quad B(-3,4) \quad C(-2,-8)$

Practice:

1. Reflect the point $(4,3)$ over the x axis.
2. Reflect the point $(4,-2)$ over the line $y=x$.
3. Reflect the point $(9,-5)$ over the $y$ axis.
4. Reflect the point (2, -3 ) over the x axis.
5. Reflect the point ( $0,-1$ ) over the line $y=x$.
6. Reflect the point $(-1,2)$ over the line $y=-x$
7. Reflect the point $(-8,3)$ over the line $y=-x$.
8. Reflect the point $(10,3)$ over the $y$ axis.

Reflections over a Line


Identify the Axis of Symmetry/Line of Reflection for each transformation.




## Rotations

Rotations	Turning a figure about a fixed point - the origin usually   What ways can we "turn" objects?   What are the two "D's" of rotation?   Will a rotation produce a similar or congruent figure?

## Example:



Rotation Rules: Use three different colored pencils and patty paper!

Starting   Point	$90^{\circ}$ Rotation Counter   Clockwise	$180^{\circ}$ Rotation Counter   Clockwise	$270^{\circ}$ Rotation Counter   Clockwise
A (1, 4)			
B (5, 2)			
C $(2,0)$			$(x, y) \rightarrow(\quad$,
What   happened?			
Rule	$(x, y) \rightarrow(\quad, \quad)$		
What else   could this   be?			

*** You are expected to memorize the rules for the Final Exam!


Quadrant Summary:


Practice:
d. What are the coordinates of $(1,3)$ under a $270^{\circ}$ counterclockwise rotation?
g. What are the coordinates of $(-5,3)$ under a $90^{\circ}$ clockwise rotation?

Example 3:

a. What are the	b. What are the	c. What are the
coordinates of	coordinates of	coordinates of
(3,-2) under a 90	$(-5,4)$ under a 180	(3,2) under a $90^{\circ}$
counterclockwise	counterclockwise	cockise
rotation?	rotation?	rotation?

e. What are the coordinates of $(-5,6)$ under a $270^{\circ}$ clockwise rotation?
h. What are the coordinates of $(-8,-5)$ under a $180^{\circ}$ counterclockwise rotation?
f. What are the coordinates of $(-7,9)$ under a $180^{\circ}$ clockwise rotation?
i. What are the coordinates of ( $7,-3$ ) under a $90^{\circ}$ counterclockwise rotation?

## Dilations

Scale Factor	A transformation that produces an image that is the $\qquad$ as the original, but a $\qquad$   A dilation $\qquad$ or $\qquad$ the original figure.   If the scale factor is greater than 1, the figure $\qquad$   If the scale factor is between 0 and 1 , the figure $\qquad$   This transformation will NOT produce a congruent figure.
Rule: $(x, y) \rightarrow(f x, f y)$ where $f$ represents the scale factor.	
Example 1: If the scale factor is 3, how would you write the rule?	

State whether a dilation using the scale factor $\boldsymbol{k}$ results in a reduction or an enlargement.
a) $k=3$
b) $k=\frac{1}{3}$
c) $k=\frac{5}{4}$
d) $k=0.93$

Quadrilateral $P Q R S$ has vertices $P(-2,4), Q(4,4), R(4,-2)$, and $S(-4,-4)$. It is dilated by a scale factor of $1 / 2$.
a) What are the coordinates of the image? Graph them.

Example:
dilation from $A$ to Figure $B$ is reduction or enlargement. ${ }^{8}$ the scoale
Then, find the yalues of the variables.

a)
b)

Determine whether the Figure
a
an
Find factor.

Reduction or Enlargement?

Scale Factor?

Reduction or Enlargement?

Scale Factor?

Variables:

Example: Write the arrow rule for the following transformations.
a. Translate 7 units left, 4 units down, and reflect over y axis
b. Translate 3 units right, 2 units up, and then dilate by $1 / 3$

c. Rotate 180 degrees and then compressed   horizontally by $1 / 2$.	d. Translate 5 units up and stretch vertically by a   factor of 3.
e. Reflect over line $y=x$, and dilate by 2.	f. Rotate 90 degrees clockwise and then reflect over   the $y$ axis

## Composition

## Definitions:

Composition	


1. Pre-image:	$\mathrm{W}(-3,-1), \mathrm{C}(-4,-3)$, and $\mathrm{H}(-1,-3)$	Arrow Rule:
Rotate the figure $270^{\circ}$		
Reflect the figure over the y-axis		
Translate the figure left 2 and up 4.		


2. Pre-image	$\mathrm{G}(2,1), \mathrm{H}(0,3)$, and L(5,4)	Arrow Rule:
Translate the figure left 2 and up 1.		
Reflect the figure over $\mathrm{y}=-\mathrm{x}$		
Reflect the figure over the y-axis		


3. Pre-image:	$\mathrm{G}(1,2), \mathrm{S}(3,0)$, and $\mathrm{T}(4,4)$	Arrow Rule:


Rotate the figure $90^{\circ}$		
Dilate the figure horizontally by a scale   factor of 4		
Translate the figure according to   $(x, y) \rightarrow(x+2, y+2)$		


4. Pre-image	$\mathrm{F}(-6,4), \mathrm{O}(-1,4)$, and $\mathrm{R}(-2,2)$	Arrow Rule:
Dilate the figure by a scale factor of $1 / 2$		
Reflect the figure over the y-axis		
Rotate the figure $270^{\circ}$ clockwise about   the origin		

