
Congruence and Triangles

Notes 4.2

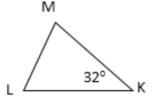
Objective: Identify congruent figures and corresponding parts

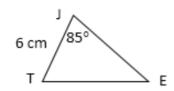
Congruent Triangles	
Corresponding Parts	
Third Angles Theorem	
THEOLEIN	


Write a congruence statement for the triangles. Identify all pairs of congruent corresponding parts.

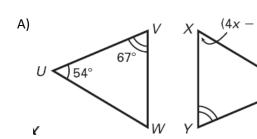
Congruence Statement: $\underline{} \cong \underline{}$

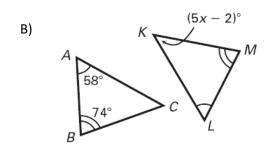
Corresponding angles: Corresponding sides:


Given $\triangle ABC \cong \triangle DEF$, label the diagram. Then, identify all pairs of congruent corresponding parts.

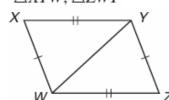


Corresponding angles:

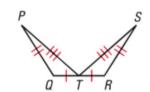

Corresponding sides:

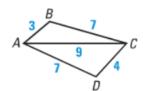

Given that Δ MKL $\cong \Delta$ JET, complete each statement.

Find the value of x.


Proving Triangles are Congruent: SSS, SAS, and HL Notes 4.3-4.4

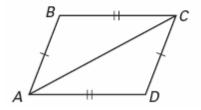
Objectives: Prove that triangles are congruent using the SSS Congruence Postulate and the SAS Congruence Theorem.


Side Side Side	М т
Congruence	
(SSS)	The state of the s
	N


Decide whether the congruence statement is true.

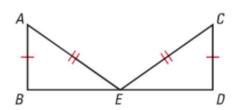
A) $\triangle XYW$, $\triangle ZWY$

B)
$$\triangle QPT \cong \triangle RST$$



Fill in the following proofs with the necessary Statements and Reasons to prove the triangles congruent.

Given: $\overline{AB} \cong \overline{CD}, \overline{BC} \cong \overline{AD}$ A)


Prove: $\triangle ABC \cong \triangle CDA$

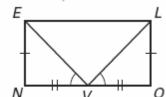
Statements	Reason

B) GIVEN $\blacktriangleright \overline{AE} \cong \overline{CE}, \overline{AB} \cong \overline{CD},$ *E* is the midpoint of \overline{BD} .

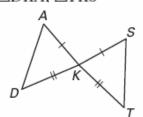
PROVE \blacktriangleright $\triangle EAB \cong \triangle ECD$

Statements	Reason	

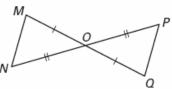
Side Angle Side Congruence	Λ^{S} Λ^{V}
SAS	$R \longrightarrow T \qquad U \longrightarrow W$
Included Angle	
Hypotenuse Leg Congruence	A, D,
HL	1 * 1 *


Use the diagram to name the included angle between the pair of sides.

- A) \overline{MT} and \overline{TR}
- B) \overline{RT} and \overline{MR}
- C) \overline{RT} and \overline{QR}


Decide whether the congruence statement is true.

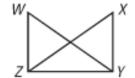
 $\triangle ENV$, $\triangle LOV$ A)


C) $\triangle DKA$, $\triangle TKS$

Name: _		Date:	Block:
	Given: O is the midpoint of MQ	M	P

O is the midpoint of NP

Prove: $\triangle MON \cong \triangle QOP$

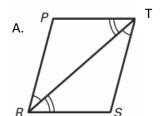


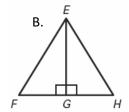
Statements	Reasons

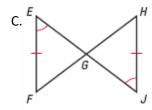
Write a proof.

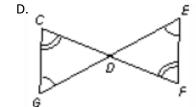
GIVEN \blacktriangleright $\overline{WY}\cong \overline{XZ}$, $\overline{WZ}\perp \overline{ZY}$, $\overline{XY}\perp \overline{ZY}$

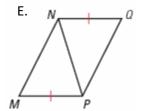
PROVE $\triangleright \triangle WYZ \cong \triangle XZY$

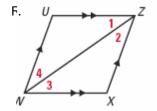

Statements	Reason

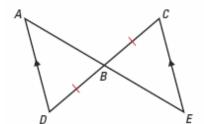

Proving Triangles Congruent: ASA, AAS Notes 4.5


Objectives: Prove that triangles are congruent using the ASA Congruence Postulate and the AAS Congruence Theorem.


Angle Side Angle Congruence	∆ ^B
ASA	A C D F
Included Side	A C
Angle Angle Side	. E
Congruence	B
AAS	A C D F


Is it possible to prove that the triangles are congruent? If so, state the postulate or theorem you would use. Explain your reasoning.



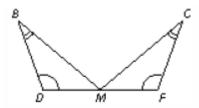


Name:	Date:	Block:

Fill in the Proof.

Given: AD || EC BD ≅ BC

Prove: \triangle ABD \cong \triangle EBC


Statements	Reasons

Given: $\angle B \cong \angle C$

∠D≅∠F

M is the midpoint of DF.

Prove: \triangle BDM \cong \triangle CFM

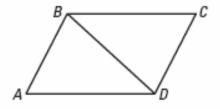
Statements	Reasons

Name:	Date:	Block:

Using Congruent Triangles

Notes 4.6

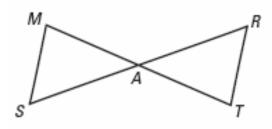
Objective: Use congruent triangles to plan and write proofs.


CPCTC-

Corresponding Parts of Congruent Triangles are Congruent *Explanation: To prove that parts (sides or angles) of triangles are congruent to parts of other triangles,

first prove the triangles are congruent. Then by CPCTC, all other corresponding parts will be congruent.

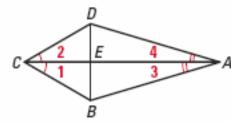
Given: $\overline{AB}\cong \overline{DC}$; $\overline{AD}\cong \overline{BC}$


Prove: $\angle A \cong \angle C$

Statements	Reasons

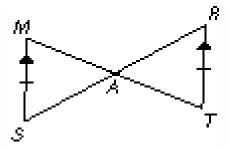
Given: $MA \cong TA$, A is the midpoint of SR

Prove: $MS \cong TR$



Statements	Reasons

Name:	Date:	Block	
maille.	Date:	RIOCK:	


Given: $\angle 1 \cong \angle 2$; $\angle 3 \cong \angle 4$

Prove: $CB \cong CD$

	_
Statements	Reasons

Given: MS | | TR; MS ≅ TR Prove: A is the midpoint of MT.

Statements	Reasons