\qquad
\qquad
\qquad

Congruence and Triangles

Objective: Identify congruent figures and corresponding parts

Congruent Triangles	
Corresponding Parts	
Third Angles Theorem	

Write a congruence statement for the triangles. Identify all pairs of congruent corresponding parts.

Congruence Statement: \qquad \cong \qquad

Corresponding angles:
Corresponding sides:

Given $\triangle A B C \cong \triangle D E F$, label the diagram. Then, identify all pairs of congruent corresponding parts.

Given that $\Delta \mathrm{MKL} \cong \Delta \mathrm{JET}$, complete each statement.
A) $\angle \mathrm{L} \cong$ \qquad B) $\mathrm{MK} \cong$ \qquad
C) $m \angle E=$ \qquad D) $\mathrm{ML}=$ \qquad
E) $\Delta \mathrm{ETJ} \cong$ \qquad
F) $\angle \mathrm{JTE} \cong$ \qquad

Find the value of x.
A)

B)

\qquad Date: \qquad Block: \qquad

Proving Triangles are Congruent: SSS, SAS, and HL

Objectives: Prove that triangles are congruent using the SSS Congruence Postulate and the SAS Congruence Theorem.

Side Side Side	
Congruence	
$(S S S)$	

Decide whether the congruence statement is true.
A) $\triangle X Y W, \triangle Z W Y$

B) $\triangle Q P T \cong \triangle R S T$

C)

Fill in the following proofs with the necessary Statements and Reasons to prove the triangles congruent.
A) Given: $\overline{A B} \cong \overline{C D}, \overline{B C} \cong \overline{A D}$

Prove: $\triangle A B C \cong \triangle C D A$

Statements	Reason

B)

Statements	Reason

\qquad Date: \qquad Block: \qquad

Side Angle Side Congruence SAS		
Included Angle		
Hypotenuse Leg Congruence HL		

Use the diagram to name the included angle between the pair of sides.
A) $\overline{M T}$ and $\overline{T R}$
B) $\overline{R T}$ and $\overline{M R}$
C) $\overline{R T}$ and $\overline{Q R}$

Decide whether the congruence statement is true.
A) $\triangle E N V, \triangle L O V$

B) $\triangle M A E, \triangle T A E$

C) $\triangle D K A, \triangle T K S$

Name: Date: \qquad
Given: O is the midpoint of MQ
O is the midpoint of NP
Prove: $\triangle M O N \cong \triangle Q O P$

Statements	Reasons

Write a proof.
GIVEN $-\overline{W Y} \cong \overline{X Z}, \overline{W Z} \perp \overline{Z Y}, \overline{X Y} \perp \overline{Z Y}$
PROVE $\triangle W Y Z \cong \triangle X Z Y$

Statements	Reason

\qquad
\qquad
\qquad

Objectives: Prove that triangles are congruent using the ASA Congruence Postulate and the AAS Congruence Theorem.

Angle Side Angle Congruence ASA		
Included Side		
Angle Angle Side Congruence AAS		

Is it possible to prove that the triangles are congruent? If so, state the postulate or theorem you would use. Explain your reasoning.

C.

D.

\qquad
Fill in the Proof.
Given: AD || EC $B D \cong B C$
Prove: $\triangle A B D \cong \triangle E B C$

Statements	Reasons

Given: $\angle \mathrm{B} \cong \angle \mathrm{C}$
$\angle \mathrm{D} \cong \angle \mathrm{F}$
M is the midpoint of $D F$.
Prove: \triangle BDM $\cong \triangle C F M$

Statements	Reasons

\qquad
\qquad
\qquad
Using Congruent Triangles
Objective: Use congruent triangles to plan and write proofs.

CPCTC-

Corresponding Parts of Congruent Triangles are Congruent

> *Explanation: To prove that parts (sides or angles) of triangles are congruent to parts of other triangles, first prove the triangles are congruent. Then by CPCTC, all other corresponding parts will be congruent.

Statements	Reasons

Given: $M A \cong T A, \mathbf{A}$ is the midpoint of $\mathbf{S R}$
Prove: $M S \cong T R$

Statements	Reasons

\qquad

Given: $\angle 1 \cong \angle 2 ; \angle 3 \cong \angle 4$
Prove: CB \cong CD

Statements	Reasons

Given: MS || TR; MS \cong TR
Prove: A is the midpoint of MT.

Statements	Reasons

