Segment and Angle Relationships – Intro to Geometry

By Angle	By Sides
Acute	Scalene
Obtuse	Isosceles
Right	Equilateral
Fauienaulor	
Triangle Sum Theorem	

Midpoint of a Segment	
Bisect	
Vertical Angles	
Linear Pair	
Complementary	
Supplementary	

1. What does the sum of the measures of the angle of a triangle equal?

2.	C A B	 a. Find m<1 + m<cab< li=""> b. Find m<2 + m<3 + m<cab< li=""> c. Using parts a and b, what do you know about m<1 and m<2 + m<3? </cab<></cab<>
3. a.	Write the Pythagorean Theorem:	
b.	With what kind of triangle can you u	se the Pythagorean Theorem?

4. Classify each triangle as acute, right or obtuse:

5. Classify each triangle as scalene, isosceles, or equilateral.

6. Solve for x in each triangle:

7. Solve for x:

8. Solve using Pythagorean Theorem

x = _____

For each problem: a) Draw and label a picture, b) Write an equation, and c) Solve for x.

9. If C is the midpoint of \overline{AB} , AC is 2x + 1, CB is 3x - 4, find x

10. If T is the midpoint of \overline{PQ} , PT = 5x + 3, TQ = 7x -9, find x.

11. m < 1 = 4x - 3 and m < 2 = x + 8. Find x and m < 2.

- 12. <5 and <6 are complementary. If m<5 = 8x 6 and m<6 = 14x + 8, find x.
- 13. m < 1 = 2x + 4 and m < 2 = 6x + 20. Find x

- 14. <3 and <4 are supplementary. m<3 = 12x 15 and m<4 = 3x + 45. Find x
- 15. If \overrightarrow{BX} bisects <ABC, m<ABX is 5x and <XBC = 3x + 10, find x.

16. If \overrightarrow{KN} bisects <JKL, m<JKN = 4x - 16 and m<NKL = 2x + 6, find x.

17. If m < 1 = x + 10 and m < 2 = 4x - 35. Find x.

18. <3 and <4 are vertical angles. m<3 = 3x + 8 and m<4 = 5x - 20, find x.

19. Point S is between points D and T. If DT =60, DS = 2x - 8, and ST = 3x - 12, find x.

20. Point F is between points E and G. If EF = 4x - 20, FG = 2x + 30, and EG = 100, find x.

21. m<ADC is 5x - 20, m<ADB = x - 4, m<BDC = x + 5. Find x.

Honors Examples:

1. A is between B and C. $BA = x^2$, AC = 6x + 10, and BC = 17. Find x and the length of each segment.

2. L is between K and M. $KL = x^2 - 10$, LM = 5x + 4, and $KM = 2x^2 - 42$. Find x.

Triangle Inequalities:

Triangle Set Up

***You should already know this:

- The smallest side is across from the smallest angle.
- The largest side is across from the largest side

Ex: List the sides in order from shortest to longest measure:

Triangle Inequality Theorem:

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

Ex: Determine if it is possible to draw a triangle with side measures 12, 11, 17.

Practice:

Can you draw a triangle using these lengths for the sides?

1. 5, 7, 9	2. 3, 4, 1	3. 5.2, 5.5, 10.1	4. 7, 7, 14

Finding the <u>range</u> of the third side given two sides:

- The 3rd side cannot be larger than the other two added together.
 - 0
 - The sum of the 3rd side and the smallest side cannot be larger than the other side
 - o _____

Ex: Given a triangle with sides of length 3 and 8, find the range of possible values for the third side.

Practice:

_

Given the 1st two sides, give the range for the 3rd side of an inequality.

1. 15 and 20	2. 22 and 34	3. 9 and 8

Practice

For each set of lengths, determine whether it is possible to draw a triangle with sides of the given measures. If possible, write yes. If not possible, write no.

 1. 3, 4, 5 _____
 2. 4, 9, 5 _____
 3. 5, 6, 12 _____

 4. 7, 3.5, 4.5 _____
 5. 4, 5, 8.5 _____
 6. .5, 1.2, .6 _____

The lengths of two sides of a triangle are given. Find the two numbers that the third side must fall between.

- 7. 3 and 8

 8. 12 and 25

- 9. 13 and 4 _____ < x < ____ 10. 13 and 21 _____ < x < ____

Arrange the letters in order from greatest to least.

 $a b \\ 61^{\circ} 58^{\circ} \\ c$

4. Name the shortest segment.

5. Name the longest segment. _____

Altitudes, Medians, Angle Bisectors & Perpendicular Bisectors

What is a perpendicular bisector?

Sketch the perpendicular bisector of *AB* in the triangles below.

ORGANIZER	Through Vertex	Through Midpoint	Forms right angle	Picture
Median				
Altitude				
Perpendicular Bisector				
Angle Bisector				
Midsegment				

Example: Sketch a picture of each statement.

a) <i>AD</i> is an altitude of DABC	b) \overline{AD} is an median of DABC
c) <i>DE</i> is a perpendicular bisector of DABC. E is between B	and C.

Examples: Determine which special segment is shown for each

RN is the perpendicular bisector of AT. How would you find the value of x? What are the lengths of AN and NT?

6) In $\triangle ABC$, \overrightarrow{DE} is perpendicular bisector of \overrightarrow{AC} with D on \overrightarrow{AC} . If AD = 2y + 4, CD = y + 12, and $m \angle EDC = 5(x - 12)^\circ$. Find the value of x and y. Find length of AD, DC, and AC.

9) **YB** is an altitude of $\triangle XYZ$, and $m \angle YBZ = (6x - 6)^\circ$. Find the value of x. What is the measure of $\angle YBZ$?

Z

х

в

2) \overline{MR} is the angle bisector of $\angle NMP$. Find x if $m \angle 1 = 5x + 8$ and $m \angle 2 = 8x - 16$.

Mid-Segment, Isosceles Triangle Theorem, and Exterior Angle Theorem

Isosceles Triangle: A triangle with 2 sides congruent sides.

Example #1: label \triangle BCD as isosceles with \angle C as the vertex angle. Find x and the measure of each side if BC = 2x + 4, BD = x + 2 and CD = 10.

Isosceles Triangle Theorem: If two sides of a triangle are congruent, then the angles opposite those angles are congruent

Example #2: If $\overline{DE} \cong \overline{CD}$, $\overline{BC} \cong \overline{AC}$, and $m \angle CDE = 120$, what is the measure of $\angle BAC$?

Theorem: If two angles of a triangle are congruent, then the sides opposite those angles are congruent

Example #4: ΔEFG is equilateral, and \overline{EH} bisects $\angle E$.

Exterior Angle Theorem :

Example 1: \overline{DE} is a midsegment of $\triangle ABC$. Find the value of x.

Examples:

Find the value of x and y.

Find the value of x and y

Find the measure of each angle indicated.

Solve for x.

NC Math 2 Unit 2A Notes **Polygons**

Definitions:

A closed figure formed by a finite number of coplanar segments so that each segment intersects exactly two others, but only at their endpoints.

These figures are not polygons

These figures are polygons

Classification of Polygon

Identify polygons

Tell whether the figure is a polygon and whether it is a concave polygon, convex polygon, or not a polygon.

# of Sides	Name of Poly	# of Sides	Name of Poly	# of Sides	Name of Poly
3		6		9	
4		7		10	
5		8		12	

From one vertex in each polygon, draw diagonals to the nonconsecutive vertices. Use the triangles to find the sum of the interior angles of each polygon.

POLYGON NAME	#of SIDES	# of TRIANGLES	SUM OF INT 2S	EACH INT ∠ (regular)	SUM OF EXT	EACH EXT ∠ (regular)
TRIANGLE						
QUADRILATERAL						
PENTAGON						
HEXAGON						
HEPTAGON						
OCTAGON						
NONAGON						
DECAGON						
DODECAGON						
n-gon						

Summary of Convex Polygon Formulas:

Sum of Interior Angles	Measure of ONE Interior Angle	Sum of Exterior Angles	Measure of ONE Exterior Angle

Examples:

Examples:	
 Sum of the measures of the interior angles of a 11-gon is 	2. The measures of an exterior angle of a regular octagon is
3. The number of sides of a regular polygon with exterior angles 72° is	4. The measure of an interior angle of a regular polygon with 30 sides
5. Find x. 60° x° x° x° x°	6. Find x.
7. Find a and b.	8. Find the measure of < RKL. R = 2x + 2 2x + 2 4x - 18 M A. 34° B. 68° C. 86° D. 148°