Segment and Angle Relationships - Intro to Geometry

By Angle	By Sides
Acute	Scalene
Obtuse	Isosceles
Right	Equilateral
Equiangular	
Triangle Sum Theorem	

Midpoint of a Segment
Bisect
Vertical Angles
Linear Pair
Complementary
Supplementary

1. What does the sum of the measures of the angle of a triangle equal?
2.

a. Find $m<1+m<C A B$ \qquad
b. Find $m<2+m<3+m<C A B$ \qquad
c. Using parts a and b , what do you know about $\mathrm{m}<1$ and $\mathrm{m}<2+\mathrm{m}<3$?
\qquad
3.
a. Write the Pythagorean Theorem: \qquad
b. With what kind of triangle can you use the Pythagorean Theorem? \qquad
4. Classify each triangle as acute, right or obtuse:
a)
a) \qquad

b)

b) \qquad
c)

c) \qquad
5. Classify each triangle as scalene, isosceles, or equilateral.
a)

b)

C)

6. Solve for x in each triangle:

7. Solve for x :

8. Solve using Pythagorean Theorem

$$
x=
$$

9. If C is the midpoint of $\overline{A B}, \mathrm{AC}$ is $2 \mathrm{x}+1, \mathrm{CB}$ is $3 \mathrm{x}-4$, find x

10. If T is the midpoint of $\overline{P Q}, \mathrm{PT}=5 \mathrm{x}+3, \mathrm{TQ}=7 \mathrm{x}-9$, find x .
11. $\mathrm{m}<1=4 \mathrm{x}-3$ and $\mathrm{m}<2=\mathrm{x}+8$. Find x and $\mathrm{m}<2$.

12. <5 and <6 are complementary. If $m<5=8 x-6$ and $m<6=14 x+8$, find x.
13. $m<1=2 x+4$ and $m<2=6 x+20$. Find x

14. <3 and <4 are supplementary. $m<3=12 x-15$ and $m<4=3 x+45$. Find x
15. If $\overrightarrow{B X}$ bisects $\angle A B C, m<A B X$ is $5 x$ and $<X B C=3 x+10$, find x.

16. If $\overrightarrow{K N}$ bisects $<\mathrm{JKL}, \mathrm{m}<\mathrm{JKN}=4 \mathrm{x}-16$ and $\mathrm{m}<\mathrm{NKL}=2 \mathrm{x}+6$, find x .
17. If $m<1=x+10$ and $m<2=4 x-35$. Find x.

18. <3 and <4 are vertical angles. $m<3=3 x+8$ and $m<4=5 x-20$, find x.
19. Point S is between points D and T. If $D T=60, D S=2 x-8$, and $S T=3 x-12$, find x.
20. Point F is between points E and G. If $E F=4 x-20, F G=2 x+30$, and $E G=100$, find x.
21. $m<A D C$ is $5 x-20, m<A D B=x-4, m<B D C=x+5$. Find x.

Honors Examples:

1. A is between B and $C . B A=x^{2}, A C=6 x+10$, and $B C=17$. Find x and the length of each segment.
2. L is between K and $M . K L=x^{2}-10, L M=5 x+4$, and $K M=2 x^{2}-42$. Find x.

Triangle Inequalities:

Triangle Set Up

***You should already know this:

- The smallest side is across from the smallest angle.
- The largest side is across from the largest side

Ex: List the sides in order from shortest to longest measure:

Triangle Inequality Theorem:

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.
Ex: Determine if it is possible to draw a triangle with side measures $12,11,17$.

Practice:
Can you draw a triangle using these lengths for the sides?

$1.5,7,9$	$2.3,4,1$	$3.5 .2,5.5,10.1$	$4.7,7,14$

Finding the range of the third side given two sides:

- The $3^{\text {rd }}$ side cannot be larger than the other two added together.
\circ
- The sum of the $3^{\text {rd }}$ side and the smallest side cannot be larger than the other side

○
Ex: Given a triangle with sides of length 3 and 8 , find the range of possible values for the third side.

Practice:
Given the $1^{\text {st }}$ two sides, give the range for the $3^{\text {rd }}$ side of an inequality.

1.15 and 20	2. 22 and 34	3.9 and 8

For each set of lengths, determine whether it is possible to draw a triangle with sides of the given measures. If possible, write yes. If not possible, write no.

1. $3,4,5$ \qquad 2. $4,9,5$ \qquad 3. $5,6,12$ \qquad
2. $7,3.5,4.5$ \qquad
3. $4,5,8.5$ \qquad 6. . $5,1.2, .6$ \qquad

The lengths of two sides of a triangle are given. Find the two numbers that the third side must fall between.
7. 3 and 8 \qquad $<\mathrm{x}<$ \qquad
8. 12 and $25 \lll<$ \qquad
9. 13 and 4 \qquad $<\mathrm{x}<$ \qquad
10. 13 and 21 \qquad $<x<$

Arrange the letters in order from greatest to least.
11. \qquad $>\ldots$ \qquad
\qquad
 \qquad
12. \qquad

a
13. \qquad \gg \qquad
14. \qquad
\qquad $>$

15. \gg \qquad 16. What conclusion can we draw from this triangle?

4. Name the shortest segment. \qquad
5. Name the longest segment. \qquad

Special Segments in Triangles:
Altitudes, Medians, Angle Bisectors \& Perpendicular Bisectors

What is a median?	What is an angle bisector?
Measure the lengths of each side and sketch all three	
medians in the triangle below.	Sketch angle bisector $\overline{C D}$.

What is an altitude?

Sketch an altitude from vertex C to $\overline{A B}$ in each triangle below.

What is a perpendicular bisector?

Sketch the perpendicular bisector of $\overline{A B}$ in the triangles below.

ORGANIZER	Through Vertex	Through Midpoint	Forms right angle	Picture
Median				
Altitude				
Perpendicular Bisector				
Angle Bisector				
Midsegment				

Example: Sketch a picture of each statement.

a) $\overline{A D}$ is an altitude of $A B C$	b) $\overline{A D}$ is an median of $A B C$
c) $\overline{D E}$ is a perpendicular bisector of $A B C$. E is between B and C.	

Examples: Determine which special segment is shown for each

1. \qquad
2. \qquad
3. \qquad
4.

2.

5.

6. \qquad

8.

6.

9.

RN is the perpendicular bisector of AT. How would you find the value of x ? What are the lengths of AN and NT?

6) In $\triangle A B C, \overleftrightarrow{D E}$ is perpendıcular bisector of $\overline{\boldsymbol{A C}}$ with D on $\overline{A C}$. If $A D=2 y+4, C D=y+12$, and $m \angle E D C=5(x-12)^{\circ}$. Find the value of x and y. Find length of $A D, D C$, and, $A C$.

9) $\overline{Y B}_{1}$ s an altitude of $\triangle X Y Z$, and $m \angle Y B Z=(6 x-6)^{\circ}$. Find the value of x . What is the measure of $\angle Y B Z$?

$\overline{\boldsymbol{R S}}$ is an altitude of $\triangle \boldsymbol{R} \boldsymbol{T E}, m \angle S R T=(4 x-8)^{\circ}$, and $m \angle S T R=(6 x+13)^{\circ}$. Find the value of x .

2) $\overrightarrow{M R}$ is the angle bisector of $\angle N M P$. Find x if $m \angle 1=5 x+8$ and $m \angle 2=8 x-16$.

6) $\overline{B D}$ is a median. Find the x

Mid-Segment, Isosceles Triangle Theorem, and Exterior Angle Theorem

Mid-segment - \qquad
\qquad
\qquad

Examples:

3.

4.

6.

Isosceles Triangle: A triangle with 2 sides congruent sides.
Example \#1: label $\triangle \mathrm{BCD}$ as isosceles with $\angle \mathrm{C}$ as the vertex angle. Find x and the measure of each side if $B C=2 x+4, B D=x+2$ and $C D=10$.

Isosceles Triangle Theorem: If two sides of a triangle are congruent, then the angles opposite those angles are congruent

Example \#2: If $\overline{D E} \cong \overline{C D}, \overline{B C} \cong \overline{A C}$, and $m \angle C D E=120$, what is the measure of $\angle B A C$?

Theorem: If two angles of a triangle are congruent, then the sides opposite those angles are congruent

Corollary: A triangle is equilateral
if and only if it is equiangular.

Corollary: Each angle of an equilateral triangle measures

Example \#4: $\triangle E F G$ is equilateral, and $\overline{E H}$ bisects $\angle E$.

Exterior Angle Theorem :

Solve for x :

1. $x=$ \qquad
2. $x=$

3. $x=$ \qquad

Example 1: $\overline{D E}$ is a midsegment of $\triangle A B C$. Find the value of \mathbf{x}.
a)

b)

c)

Examples:
1)

Find the value of x and y.
Find the value of x and y
1)

2)

Find the measure of each angle indicated.
1)

2)

Solve for x .
3.

4. 11)

NC Math 2 Unit 2A Notes

Polygons

Definitions:

A closed figure formed by a finite number of coplanar segments so that each segment intersects exactly two others, but only at their endpoints.

These figures are not polygons

These figures are polygons

Classification of Polygon

Identify polygons

Tell whether the figure is a polygon and whether it is a concave polygon, convex polygon, or not a polygon.
a.

b.

c.

d.

e.

\# of Sides	Name of Poly	\# of Sides	Name of Poly	\# of Sides	Name of Poly
3		6		9	
4		7		10	
5		8		12	

From one vertex in each polygon, draw diagonals to the nonconsecutive vertices. Use the triangles to find the sum of the interior angles of each polygon.

\#sides=
\#triangles=
sum of interior angles= \qquad

\#sides=
\#triangles= \qquad
sum of interior angles=

\#sides=

\#triangles= \qquad
sum of interior angles=

\#sides=
\#triangles=
sum of interior angles=
\qquad

\#sides= \qquad
\#triangles= \qquad
sum of interior angles= \qquad

雱	$\begin{aligned} & \hline \frac{0}{2} \\ & \text { P/ } \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & \text { 膏 } \\ & \stackrel{\rightharpoonup}{z} \\ & \hline \end{aligned}$		$\begin{array}{\|l\|l} \hline \frac{8}{3} \\ \frac{3}{2} \end{array}$		$\begin{aligned} & \hline \text { 賈 } \\ & \text { in } \end{aligned}$				（
										号
										｜cer

Summary of Convex Polygon Formulas:

Sum of Interior Angles	Measure of ONE Interior Angle	Sum of Exterior Angles	Measure of ONE Exterior Angle

Examples:

| 1. Sum of the measures of the interior angles of a |
| :--- | :--- |
| 11-gon is |
| 3. The number of sides of a regular polygon with |
| exterior angles 72° is |
| octagon is | | 4. The measure of an interior angle of a regular |
| :--- |
| polygon with 30 sides |

